Conférence Planétarium Aix en Provence, 26/11/2015

La mission ROSETTA

Premiers résultats

Laurent Jorda

Laboratoire d'Astrophysique de Marseille

Université Aix-Marseille

APRES UN VOYAGE DE 10 ANS, LE ROBOT PHILAE VA ATTERRIR SUR WE CONETE.

• Une mission plus ambitieuse ...

- Mise en orbite autour du noyau \rightarrow observations continues
- Observations rapprochées -> détails de la surface (< 20cm)
- Nombreux instruments → richesse des données collectées
- Larguage d'un module à la surface → données à la surface
- ... mais très complexe
 - Temps de croisière important pour atteindre la comète (+10 ans)
 - Hibernation pendant plus de deux ans (2012-2013)
 - Environnement cométaire dangereux (gaz et poussières)
 - Opérations de l'orbiteur continues et très complexes

Modèle 3D du noyau de la comète Tchouri

Méthode : stéréo-photoclinométrie (SPC) par R. Gaskell (PSI, USA et LAM)

Modèle 3D du noyau de la comète Tchouri

Structure binaire du noyau de la comète Tchouri

[Pätzold et al., soumis à Nature ; Jorda et al., soumis à Icarus]

Structure de type « binaire consolidée » :

- Origine des deux lobes :
 - **1** Formation séparée de deux « planétésimaux » dans le disque
 - 2 Collision à faible vitesse (< 40 km/h) dans la nébuleuse primitive
 - **3 Erosion progressive des deux fragments (couche qques 100m)**
 - + Remplissage de la zone intermédiaire (zone du cou)

• Remarques complémentaires :

- Autre hypothèse : une érosion dûe à l'activité est improbable
- Très fréquent pour les noyaux cométaires (~ 30-50 %)
- Faible surdensité attendue au niveau du cou ?

[Sierks et al., Science, 2015] [Davidsson et al., A&A, 2015]

L'ATTERRISSEUR PHILAE

Instruments à bord du module PHILAE

Site d'atterrissage prévu du module PHILAE

Film montrant la descente du module PHILAE.

Images prises depuis la sonde ROSETTA

Systèmes d'arrimage du module PHILAE

Image du site J prise par la caméra de descente ROLIS

Panorama du site K obtenu par les caméras CIVA de PHILAE

Trajectoire reconstruite du module PHILAE

Site d'atterrissage final du module PHILAE

Localisation de la zone d'atterrissage finale basée sur les mesures de distance de l'instrument CONSERT

Additional candidate assuming shape model deviation

59 m

3011

Landing area based on current shape model

Site d'atterrissage final du module PHILAE

• Identification du site d'atterrissage (OSIRIS/LAM) :

• Etat des contacts avec PHILAE :

- Première reprise de contact le 19 juin 2015
- Nombreux contacts avec un bon signal, mais brefs (env. 10 min)
- Aucune opération des instruments, pas de nouvelles données
- Dernier contact le 9 juillet 2015, rien depuis
- Nouvelles tentatives dans les semaines à venir

Site d'atterrissage final du module PHILAE

• Modèle 3D du site d'atterrissage (LAM) :

Reconstruction 3D (MPCD)

Site d'atterrissage final du module PHILAE

• Modèle 3D du site d'atterrissage (LAM) :

Reconstruction 3D (MPCD)

Site d'atterrissage final du module PHILAE

• Modèle 3D du site d'atterrissage (LAM) :

Reconstruction 3D (MPCD)

[Capanna et al., DPS 2015]

QUELS RÉSULTATS ? Sélection de travaux ...

COMPOSITION DU NOYAU Hétérogénéité de composition

COMPOSITION DU NOYAU Hétérogénéité de composition

[Hässig et al., Science, 2015]

COMPOSITION DU NOYAU Hétérogénéité de composition

Zone riche en CO2?

[Hässig et al., Science, 2015]

BIG BANG

ÉTOILES

H-H H-D

Milieu interstellaire | Nébuleuse primitive

Molécules H₂ et HD

COMPOSITION DU NOYAU Mesure du rapport D/H

COMPOSITION DU NOYAU Mesure du rapport D/H

COMPOSITION DU NOYAU Mesure du rapport D/H

Mesure du rapport D / H :

Instrument ROSINA = spectromètre de masse

Mesure fiable et très précise (comptage des molécules H2O et HDO)

• Origine de l'eau des océans terrestres :

- Pas de contribution significative des comètes
- Contribution d'astéroïdes hydratés ?
- Mesure incompatible avec celle de P/Hartley 2 ...

• Gradient positif vers l'extérieur du système solaire :

Mécanismes chimiques d'enrichissement en deutérium
Dans le milieu interstellaire = chimie neutres-ions : x 10-100
Dans la nébuleuse primitive = chimie neutres-neutres : x 3

[Altwegg et al., Science, 2015]

STRUCTURE INTERNE Structures en terrasses

ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

STRUCTURE INTERNE Structures en terrasses

Stratification du noyau

<u>Structure en oignon :</u>

- Analyse des terrasses
- Epaisseur : 100-300 m
- 5 couches identifiées

[Massironi et al., Nature, 2015]

Hémisphère sud de la comète

NAC Image May 2, 10:42 UTC

Structure en couche ?

Structure interne du noyau :

• Origine de la stratification du noyau :

- Accrétion par étapes dans un milieu inhomogène ?
- Vitesses d'accrétion variables dans le temps ?
- Lien avec les inhomogénéités de composition / densité ?

• Densité inhomogène

- Fortes indications liées à la rotation du noyau de la comète

Ruban de soie de la dynastie Han (Chine) Inventaire des différents aspects de comètes IVème siècle avant J.C.

Découvert en 1973 à Ma Wang Dui en Chine (province du Hunan)

STRUCTURE BINAIRE

103P/Hartley 2 (mission EPOXI)

Autres noyaux doubles:

- 8P/Tuttle (Harmon et al.; Lamy et al.)
- 103P/Hartley 2 (Thomas et al.)
- 19P/Borrelly (Oberst et al.) ?

STRUCTURE BINAIRE

[Sierks et al., Science] [Thomas et al., Science]

COMPOSITION Inhomogénéités

Mesure de rapports moléculaires :

Instrument ROSINA = spectromètre de masse à haute-résolution

• Origine des fortes variations mesurées :

- Inhomogénéités de composition des glaces (cf. P/Hartley 2)
- Enrichissement en CO2 dans une zone appelée 'Imhotep'
- Jets de gaz de composition différente ?
- Lien avec les couches détectées par OSIRIS ?

COMPOSITION Rapport gaz/poussière

Mesure du rapport P/G :

- Poussières :
 - Prise en compte des grains détectés par GIADA
 - Utilisation des images OSIRIS
- Gaz :
 - Densité de colonne mesurée par MIRO

Rapport P / G en masse = 4 ± 2 Porosité = 50-80 %

```
(valeurs préliminaires)
```

CONCLUSIONS

Principaux résultats :

• Structure du noyau à grande échelle

- Structure binaire consolidée, deux lobes non-alignés
- Stratification probable des deux lobes
- Fracturation en cours au noveau du cou ?

• Topographie de surface à petite échelle :

- Grande variétés de structures
- Plusieurs structures inattendues : nodules, puits, ...
- Nombreuses fractures à différentes échelles (mm au m)

• Processus physiques :

- Erosion dûe au dégazage et aux brises latérales
- Gravité et rotation : chute et transport de matière ?
- Chocs thermiques : fractures ?

CONCLUSIONS

Quelques questions qui émergent :

• Structure = binaire consolidée

- Lieu de formation des deux composantes ?
- Date et mécanisme de formation ?
- Porosité élevée (> 50%)
 - A quelle échelle ?
 - Faible cohésion du noyau
 - Micro-porosité : faible cohésion à petite échelle.
 - Macro-porosité : présence de fractures, de puits, de cavités
- Structure inhomogène du noyau
 - Composition des couches ?
 - Ségrégation dans la nébuleuse primitive (tourbillons ...)?
 - Origine des débris, certains très gros (> 50 m) ?

CONCLUSIONS

Quelques questions qui émergent :

• Comment fonctionne le dégazage ?

- Presque pas de glace en surface (VIRTIS, moins que P/Tempel 1)
- Très faible conductivité thermique (MIRO, VIRTIS)
- Dégazage depuis des régions très étendues
- Rôle des falaises ?
- Quelle est la distribution en taille des cométésimaux ?
 - Les « nodules » sont-ils le produit de l'accrétion ?

PERSPECTIVES

Observations futures :

- Mission
 - Observations au périhélie (> 200 km)
 - Prolongement jusqu'à septembre 2016 (confirmé)
 - Fin de vie = descente progressive en spirale vers la surface

• ROSINA

- Concentration de l'ammoniaque (rapport N2 / CO)
- Concentration des gaz rares

• OSIRIS

- Processus d'érosion et activité
- Evolution des paramètres rotationnels (effet des FNG)

- Bilan des opérations de PHILAE
 - Excellente collecte de données :
 - . forage MUPUS réussi (à confirmer pour COSAC et APX)
 - . imagerie réussie (ROLIS, CIVA)
 - . bonnes données de sondage radio (CONSERT)
 - . certains modes n'ont pas pu être utilisés
 - Zone d'atterrissage finale intéressante :
 - . petite cavité protégée montrant les matériaux sous la surface
 - Durée d'opération limitée par la batterie :
 - . fonctionnement nominal des batteries
 - . peu d'éclairement (1h30)

PROPRIETES DU NOYAU

[Jorda et al., A&A, in prep.]

scienceogram.org

HOW MUCH DOES IT COST TO LAND ON A COMET?

PROPRIETES DU NOYAU

[Sierks et al., Science] [Thomas et al., Science]

STRUCTURE INTERNE Structures en terrasses

GEOMORPHOLOGIE Unités géologiques

GEOMORPHOLOGIE Structure en couche

[Massironi et al., soumis à A&A]

GEOMORPHOLOGIE Zones de bassins

• Origine :

- D'où vient sa forme particulière ?
- Pourquoi les comètes sont-elles si poreuses ?
- Sont-elles formées de couches successives ?
- Sont-elles homogènes ?
- Peut-on identifier les cométésimaux ?
- Evolution :
 - Comment se forment les différents terrains ?
 - Comment évoluent-ils ?
 - D'où vient l'activité ?
 - Comment affecte-t-elle la surface?

COMPOSITION Rapport D/H

Enrichissement de l'eau en D :

• Mécanismes d'enrichissement :

- Sédimentation préférentielle du HDO dans la NP ?
- Réactions grains-gaz ?
- ...

=> Augmentation du rapport D/H avec la distance au proto-Soleil

Conclusions

- Accord avec les modèles d'enrichissement en D dans la NP
- Désaccord avec les mesures EPOXI et HERSCHEL

COMPOSITION Concentration en ammoniaque

Mesure du rapport N₂ / CO :

- Mesure du rapport N₂ / CO avec ROSINA :
 - Valeur = 0.2–1.6 %
 - Fort appauvrissement par rapport à la nébuleuse primitive
- Modélisation :
 - Formation de clathrates de CO N_2
 - Dépendance
- Conclusions
 - Formation des grains cométaires entre 30 et 70 K

PHILAE/ROLIS

Date :	12/11/2014
Distance:	40 m
Résolution:	0,04 m/px

- Position du lander à la surface
 - Région approximative connue :
 - . distance en vol grâce à la liaison radio (CONSERT)
 - . position sur les images de l'orbiteur (OSIRIS et NAVCAM)
 - . reconstruction de trajectoire à l'ESOC
 - Recherche en cours avec la caméra OSIRIS :
 - . imagerie de la zone prévue à partir du 6 décembre
- Etat actuel du lander
 - Batteries déchargées et difficiles à recharger :
 - . peu d'éclairement par jour cométaire
 - . basse température rendant difficile la recharge
 - Possibilité de réactiver PHILAE plus tard :
 - . meilleures conditions d'éclairement et de température en 2015

PROPRIETES DU NOYAU

[Jorda et al., A&A, in prep.] [Scholten et al., A&A, in prep.]

Paramètres	Valeurs
Rayon moyen	1.84 ± 0.05 km
Ellipsoïde	2.42 x 1.58 x 1.43 km
Rayons axes principaux	(2.28 ± 0.03) x (1.36 ± 0.03) x (1.41 ± 0.22) km
Surface	47.4 ± 0.8 km² (Rs = 1.94 km)
Volume	21.4 ± 2.0 km ³ (Rv = 1.72 km)
Densité	470 ± 45 kg / m³ (avec la masse RSI)
Direction du pôle (RA, Dec)	(69.4 ± 0.1°, 64.0 ± 0.1°)
Période de rotation	12.4041 hr (Ω = 696.543335 ° / jour)
Moments d'inertie	1:1.04:1.87 (Rayons: 0.99 x 1.32 x 1.35 km)
Accélération à la surface	Moy: 1.6 cm / s ² Domaine: [1.3 : 2.2] cm / s ²
LA MISSION ROSETTA

OSIRIS/NAC	
Date :	30/09/2014
Distance:	20 km
Filtre:	ORANGE
Résolution:	0,4 m/px

LA MISSION ROSETTA

Choix du site d'atterrissage :

- Critères :
 - Topographie de la zone d'atterrissage
 - Réalisation de l'orbite de larguage
 - Durée de vol du module jusqu'à la surface
 - Alimentation électrique des batteries du module
 - Visibilité du module depuis l'orbiteur

IMAGES A HAUTE RESOLUTION

OSIRIS/NAC	
Date :	22/08/2014
Distance:	60 km
Filtre:	ORANGE
Résolution:	1,2 m/px

GEOMORPHOLOGIE Blocs en surface

[Sierks et al., AGU; Preusker et al., soumis à PSS]

IMAGES A HAUTE RESOLUTION

OSIRIS/NAC	
Date :	16/08/2014
Distance:	95 km
Filtre:	ORANGE
Résolution:	1,91 m/px